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The human visual system is the most complex pattern

recognition device known. In ways that are yet to be fully

understood, the visual cortex arrives at a simple and

unambiguous interpretation of data from the retinal image that is

useful for the decisions and actions of everyday life. Recent

advances in Bayesian models of computer vision and in the

measurement and modeling of natural image statistics are

providing the tools to test and constrain theories of human object

perception. In turn, these theories are having an impact on the

interpretation of cortical function.
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Abbreviations
fMRI function magnetic resonance imaging

I image description or feature

p probability

r reliability

S object description

V1 primary visual cortex

Introduction
The certainty of human visual experience stands in stark

contrast to the objective ambiguity of the features of

natural images, that is, the images received by the eye

during daily activities. Similar objects can give rise to

very different images (Figure 1a), whereas different

objects can give rise to practically identical images

(Figure 1b). Although we can easily see the bicycles

in (Figure 1a (top), the images themselves are very

complex (see (Figure 1a [bottom]), and the features

of these images, corresponding to the wheels and frames

of the bicycles, are highly ambiguous. Our brains are

specialized for understanding natural images, and this

disguises the difficulty of dealing with their complexity

and ambiguity.

Visual scientists must come to terms with this ambiguity

and complexity. Computer vision is a relatively recent

science that develops theories and algorithms to extract

information from natural images useful for recognition,

scene interpretation, and robot actions. One of the recent

lessons from computer vision is that natural images have

properties and structures that differ greatly from the

artificial stimuli typically studied by visual scientists (com-

pare (Figure 1a [bottom]) to the dots, sinusoidal gratings,

and line drawings traditionally used as experimental sti-

muli). Nevertheless, the neural and psychological study of

visual perception requires us to simplify problems so that

they can be investigated under controlled circumstances.

Bayesian models of visual perception allow scientists to

break these problems down into limited classes of cate-

gories that lie within a theoretical framework that can be

extended to deal with the ambiguities and complexities of

natural images in studies of computer vision.

The Bayesian framework for vision has its origins with

Helmholtz’s notion of unconscious inference [1], and in

recent years it has been formally developed by visual

scientists [2,3,4�,5��]. It uses Bayesian probability theory

[6], in which prior knowledge about visual scenes is

combined with image features to infer the most probable

interpretation of the image (Figure 2). The Bayesian

approach can be used to derive statistically optimal ‘ideal

observer’ models, which can be used to normalize human

performance with respect to the information needed to

perform a visual task [7–9]. There is growing evidence,

some of which is reviewed below, showing that human

visual perception can be close to ideal for visual tasks of

high utility and under visual conditions that approximate

those typically encountered. The Bayesian approach to

human object perception has been recently advanced

along two main fronts: the analysis of real-world statistics,

and a categorization and better understanding of infer-

ence problems. Bayesian inference of object properties

relies on probabilistic descriptions of image features as a

function of their causes in the world, such as object shape,

material, and illumination. Bayesian inference in addition

relies on ‘prior’ descriptions of these same causes inde-

pendent of the images. Computer vision studies have

shown how measurements of real-world statistics, both of

images and causes in the world, provide the basis on

which to model the probabilities required to make reli-

able inferences of object properties from image features.

Real-world statistics
The statistical regularities in natural images and scene

properties are essential for taming the complexity and

ambiguity of image interpretation. For example, in
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natural images, nearby pixels tend to have the same

intensity. Further, the distribution of the difference in

intensity between pairs of pixels is highly non-Gaussian

(Figure 3). Scene properties such as object shape, mate-

rial, and illumination also show statistical regularities. A

common assumption in computer vision is that surface

orientation of an object tends to vary smoothly. Recent

studies of natural image data have shown how statistics

can provide an efficient characterization of homogeneous

textures [10,11�,12], help to discount the illuminant

[13,14�], find object boundaries [15�], contribute to scene

recognition [16], and constrain the context for object

recognition [17�]. Statistics on the geometry of contours

have been used to explain aspects of human perception

[18�,19�], and statistical shape regularities enable com-

puter vision systems to group image features consistent

with the constraints identified by Gestalt psychologists,

such as requiring that nearby edges with similar orienta-

tions are likely to belong to the same contour [20].

Other statistical regularities relate image features to mea-

surements of object or scene properties. They constrain

local boundary detection (Figure 3a; [21�]), identify reg-

ularities on the changes of image features as illumination

conditions vary (Figure 3b; [22]), and help to interpret

human body motion [23]. Relating image intensity to

measured surface-depth statistics has yielded computer

vision solutions for face recognition [24], provided objec-

tive models [25] for face recognition experiments [26], and

given insight into the functional nature of certain kinds of

illusions [27�]. It is largely an open question of how the

human visual system learns the appropriate statistical

priors, but some priors as well as strategies for learning

priors are likely to be rooted in our genes [28,29].

Basic Bayes
The Bayes formula for inverse inference is:

pðSjIÞ ¼ pðIjSÞpðSÞ
pðIÞ

where p(I|S) is the model for forming an image (I), and

p(S) is prior knowledge about the naturally occurring

structures (S) (Figure 2). Both p(S) and p(I|S) can be

learnt from real-world statistics.

The distributions of p(I|S) and p(S) define an ensemble

of problem instances governed by a joint probability

pðS; IÞ ¼ pðIjSÞpðSÞ. This probability can be represented

by a simple graph, which we call Basic Bayes, in which the

two nodes of the graph, represented by the two circles,

represent S and I (Figure 4a). Ideal observers can be

defined for this ensemble of problems. An ideal observer

infers the most probable (or in the more general case of

Bayesian decision theory, the most useful) value of S

Figure 1

(a) (b)
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Objective ambiguity of images (a) The top panel shows two views of the same bicycle and the bottom panel plots the two images as surfaces

(Reproduced with permission from [65]). (b) With different lighting directions, flattened and elongated facial geometries (the two left profiles) produce

identical images (right). Despite this bas-relief ambiguity, the visual system arrives at a subjectively unique perceived shape, which in this case is

typically different to either of the profiles. The profile views of the faces on the left illustrate the true depths of the surfaces. The bottom surface is

the same as the top except for a scale factor in depth. By illuminating the top face from a more vertical angle than the bottom face, one obtains similar

images. When the surface reflectance is uniform Lambertian, the images are identical. This trade-off between depth scale and illumination

direction is called the bas-relief ambiguity. (Adapted from [63], � 1993 IEEE.)
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given I, that is, the value of S that gives the maximum

value of p(S|I). The ideal’s performance is determined by

the information for the visual task and can be used as a

benchmark to evaluate human performance.

One consequence of Baye’s formula is that perception is a

trade-off between image feature reliability, as embodied

by p(I|S), and the prior p(S). Some perceptions may be

driven more by prior knowledge and some more by data.

The less reliable the image features (e.g. the more they

are ambiguous), the more the perception is influenced by

the prior knowledge. This trade-off has been illustrated

for a variety of visual phenomena [30,31,32��,33].

We can obtain a deeper understanding by categorizing

Bayesian problems with graphs, or influence diagrams.

First, decompose the natural world S into components S1,

S2, S3. . .., the image into features I1, I2, I3,. . .., and express

the ensemble distribution as pðS; IÞ ¼ pðS1; S2; . . . ; I1;
I2; . . .Þ. Such a decomposition may not be straightforward

and some ensemble distributions may be hard to express

or to learn; however, for a given problem we can begin by

characterizing how variables in the world influence each

other and the resulting image features by representing the

distribution with an influence diagram in which the nodes

correspond to the variables S1, S2, S3,. . .., and I1, I2, I3, . . ..,
and we draw links between the nodes that directly

Figure 2
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Illustration of Bayesian object perception (a) What 3D object caused the image of a cube? The likelihood (p(I|S)¼p(image data|object descriptions))

constrains the possible set of objects to those consistent with the image data, but even this is an infinite set. (b) The prior knowledge probability

(p(S)¼p(object descriptions)) constrains the consistent set of 3D objects to those that are more probable in the world. (c,d) The probability over

all instances is determined by the product of the likelihood and prior knowledge: p(S,I)¼p(I|S)p(S)¼p(object descriptions, image data). See the section

on Basic Bayes for mathematical definitions. (Adapted from [64], � 1993 IEEE.)
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influence each other (in the worst case, all nodes are

connected and we get a complicated diagram). These

influence diagrams provide a classification of visual infer-

ence problems in terms of how image features are gen-

erated (Figure 4). We now describe three important

categories of visual inference problems.

Discounting
How does the visual system enable us to infer the same

object despite considerable image variation caused by

confounding variables, such as viewpoint, illumination,

occlusion, and background changes? This is the well-

known problem of invariance (Figure 1a). Confounding

variables are analogous to ‘noise’ in classical signal-

detection theory, but they are more complicated to

model and they affect image formation in a non-linear

manner.

From a Bayesian perspective, we can model problems

with confounding variables by the influence diagram in

(Figure 4b. We define an ensemble distribution p(S1, S2,

I1), where S1 is the target (e.g. a bicycle), S2 is the

Figure 3
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Examples of natural image statistics (a) The far-left upper panel illustrates models of receptive fields of neurons in V1 that can be used to compute

image features. The center panel shows the typical histogram, or probability distribution, of the feature response to a natural image. This standard

form, where zero feature response is most common and larger responses occur with exponential fall-off, has been reported for many visual features

and used to motivate neural encodings hypotheses [11�]. To perform Bayesian inference, it is helpful to characterize feature responses according
to the world events that give rise to them. The sum of the squares of these filter responses can be used as an edge detector filter. (b) The histograms

of an edge detector filter, Pon and Poff, conditioned on whether the filter is evaluated on or off an edge (e.g. an object boundary) in the scene. We can

then infer the positions of edges in an image by calculating edge-filter responses and evaluating the ratio Pon/Poff — the higher the ratio the more likely

there is an edge [21�]. (c) This determines directional image features that are statistically insensitive to changes in illumination and can be used to

design object recognition systems that are roughly insensitive to illumination [22]. A directional filter is specified by two filters whose receptive fields are

tuned at 908 to each other (bottom left). Its response is a two-dimensional vector that can be characterized by its magnitude and angle. The plot

shows the probability of the changes in magnitude and angle as the illumination conditions vary. It shows that the angle direction is very insensitive to

the illumination whereas the magnitude is more variable. Hence, the angle can be treated as a statistical invariant and used as input to a recognition

system.
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confounding variable (e.g. viewpoint), and I1 is the image.

Then we discount the confounding variables by integrat-

ing them out (or summing over them):

pðS1; I1Þ ¼
X

S2

pðS1; S2; I1Þ

Discounting illumination by integrating it out can reduce

ambiguity with regards to the location or shape of an

object [34,35]. Integrating out illumination level or direc-

tion has also been used to model apparent surface color

[36,37]. Similarly, viewpoint can be treated as a confound-

ing variable that can be discounted [8].

Figure 4
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(a) (b)

(c)

(d)

Influence diagrams representing generative models for four categories of Bayesian inference. The arrows indicate how scene or object properties (S)

influence image measurements (I). Visual inference goes against the arrows (i.e. it is inverse inference). The influence diagrams simplify the problem

structure, determining how the joint probability over problem instances can be factored. Visual inference also depends on the task, and the node

colors represent random variables that fall into four classes. The variables may be: 1) known (black); 2) unknown and need to be estimated

accurately (green); 3) unknown, but do not need to be accurately estimated (red); 4) auxiliary, not directly influenced by the object variable of interest,

but may be useful for resolving ambiguity (yellow). (a) Basic Bayes illustrates how a scene variable influences an image measurement. The influence

diagram factoring is p(S,I)¼p(I|S)p(S). The cube problem in Figure 3 is an example. (b) Discounting illustrates two scene factors (S1 and S2) that

both influence the image measurement (I). The one that does not need to be estimated is a confounding variable to be discounted. The influence

diagram structure corresponds to p(S1, S2,I)¼p(I|S1, S2)p(S1)p(S2). Recognizing that the images are of the same bicycle (Figure 1a) requires one to

discount a change in view. (c) Cue integration shows how the same factor (S) in a scene influences two different features or cues (I1 and I2). The

influence diagram structure corresponds to p(S, I1, I2)¼p(I1, I2|S)p(S). The shadow means that the lower two green squares appear to be further from

the checkerboard; however, when seen in stereo (with eyes crossed), the disparity and shadow cues combine, and the upper green square is seen to

be further from the checkerboard. (d) Perceptual ‘explaining away’. Two scene parameters (S1 and S2) may influence an image measurement (I1), and

an auxiliary measurement (I2) ‘tips the balance’ in favor of a different value of S1. The influence diagram structure corresponds to p(S1, S2, I1,

I2)¼p(I2|S2)p(I1|S1, S2)p(S1)p(S2). Four red line segments may appear as four distinct objects because the vertices are occluded. When auxiliary

evidence (the blue bars) is taken into account, the missing vertices are explained and the four red-line segments become perceptually organized into a

single diamond [50,52��].
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From the perspective of utility theory, discounting a

variable is equivalent to treating it as having such low

utility that it is not worth estimating [38]. At the other

extreme, an alternative to ‘integrating out’ across a variety

of possibilities is to accurately estimate the confounding

variable that accounts for this particular image. This can

result in the explaining away phenomenon discussed

below. The choice of which variables to discount will

depend on the task. Illumination is a confounding vari-

able if the task is to recognize or to determine the depth of

an object, but not if the task is to determine the direction

of the light source. This task dependence may account for

studies in which different ‘operationalisations’ for mea-

suring a human’s estimates of shape lead to inconsistent,

although related, results [39].

Cue integration
Vision integrates information from a variety of sources

about the relative depths of objects, their shapes and their

motions. For example, one can identify more than a dozen

cues that the human visual system utilizes for depth

perception. These can be modeled from a Bayesian

perspective [40].

We illustrate cue integration in the influence diagram in

(Figure 4c. An important situation arises when the nodes

represent gaussian variables and we have estimates Ŝ1

and Ŝ2 for each cue alone (i.e. Ŝ1 is the best estimator for

p(S|I1)). Then, optimal integration (i.e. the most prob-

able value) of the two estimates takes into account the

uncertainty caused by measurement noise (the standard

deviations, s1 and s2), and is given by the weighted

average,

Ŝoptimal ¼ Ŝ1
r1

r1 þ r2
þ Ŝ2

r2

r1 þ r2

where ri, the reliability, is the reciprocal of the variance

(ri ¼ 1=s2
i ). This model has been used to study whether

the human visual system combines cues optimally [41�].
In particular, visual and haptic information about object

size are combined, and weighted according to the relia-

bility of the source [42��]. A more complicated model uses

robust statistics to determine whether one measurement

is an outlier, and therefore should not be integrated with

the other measurement [43]. Integration is also important

for grouping local image elements that are likely to belong

to the same surface. A model of Bayes optimal motion

integration accounts for a large number of motion illu-

sions and experimental data [32��,44]. In another domain,

the human visual system optimally combines spatial

frequency and orientation information when detecting

the boundary between two regions [45]. Human observers

behave like an optimal observer when integrating infor-

mation from skew symmetry and disparity in perceiving

the orientation of a planar object [46�]. Psychological

experiments show that prior probabilities can also com-

bine like weighted cues [47�].

However, not all kinds of cue integration are consistent

with the simple influence diagram of (Figure 4c. It has

been argued [38] that strong coupling of visual cues [40] is

required to model a range of visual phenomena [48].

Perceptual ‘explaining away’
Visual ambiguity can be reduced by auxiliary measure-

ments that may be available in a given image or actively

sought (see the influence-diagram structure in (Figure 4d).

Indeed, these measurements may completely alter the

percept by explaining away the effects of the confounding

variables. The term ‘explaining away’ originates in the

context of reasoning where a change in the probability

of one competing hypothesis affects the probability of

another [49].

A striking example of perceptual ‘explaining away’ can be

experienced when the diamond in (Figure 4d translates

back and forth horizontally; yet depending on auxiliary

evidence, the segments may appear to be moving verti-

cally [50,51�,52��]. In other examples, binocular stereo

information (effectively adding a new image of the object)

can be used to change the apparent shape of a card folded

concavely and, as a consequence, can also change the

apparent color saturation [37]. However, human percep-

tion can also unexpectedly fail to explain away [53].

Explaining away is closely related to the situation seen

with competitive models, in which two alternative models

attempt to explain the same data. It has been argued that

this accounts for a range of visual phenomena [38],

including the estimation of material properties [54]. This

approach has been used successfully in computer vision

systems [55��].

Neural implications
What are the neural implications of ideal-observer mod-

els? They can, of course, be treated as purely functional

models of perception. They will be far more plausible,

however, if they can be linked to neural mechanisms and

used to make experimental predictions. Fortunately, the

graphical structure of these models often makes it

straightforward to map them onto networks and suggests

neural implementations.

One class of Bayesian models can be implemented by

parallel networks with local interactions. These include

the motion models [32��] and a temporal-motion model

[56], which was designed to be consistent with neural

mechanisms. In these models, the prior knowledge and

likelihood functions are implemented by synaptic

weights. Such models are broadly consistent with some

electrode recordings [57��], but detailed testing is imprac-

tical at present.

There are proposed neural mechanisms for representing

uncertainty in neural populations that thereby give a

6 Cognitive Neuroscience
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mechanism for weighted cue combination. The most

plausible candidate is population encoding [58].

Interestingly, the graphical nature of Bayesian models is

suggestive of the feedforward and feedback connections

[59,60�] that connect the visual areas of primates. A

possible role for higher-level visual areas, for example

the lateral occipital complex [61], may be to represent

hypotheses regarding object properties that could be used

to resolve ambiguities in the incoming retinal-image

measurements that are represented in the primary visual

cortex (V1). These hypotheses could predict incoming

data through feedback and be tested by computing a

difference signal or residual at the earlier level [59]. Thus,

low activity at an early level would mean a ‘good fit’ or

explanation of the image measurements. Experimental

support for this possibility comes from recent functional

magnetic resonance imaging (fMRI) data [52��].

Two alternative theoretical possibilities might explain

why early visual activity is reduced. High-level areas

may explain away the image and cause the early areas

to be completely suppressed; that is, high-level areas tell

lower levels to ‘shut up’. Alternatively, high-level areas

might sharpen the responses of the early areas by redu-

cing activity that is inconsistent with the high level

interpretation; that is, high-level areas tell lower levels

to ‘stop gossiping’. This second possibility seems more

consistent with some electrode-recording experiments

[57��], but further experiments are needed to resolve

this issue.

Moreover, there are alternative ways to implement

Bayesian models even if feedback and feedforward con-

nections are used. A recent approach uses image features

to predict high-level structure that can then be verified by

comparison to the image, and has been very successful for

segmenting natural images [62�].

Conclusions
The Bayesian approach has proven very useful for both

designing ideal observer models for psychological experi-

ments and designing practical computer-vision systems.

By taking advantage of the statistical regularities in

images and scene structures this approach offers a way

to deal with the ambiguity and complexity of natural

images. Different visual tasks can be characterized by

graphical models that illustrate the dependencies

between the variables that describe the task. These

graphical models also suggest ways to implement these

functional models in terms of neural mechanisms that can

be tested by fMRI and electrode recording.
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