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Lecture 2b

Models and neural computation

Neural Models

What is a model? A simplification of something complicated to help our understanding. 

What is a good model? Reduces complexity but still preserves essential features of the phenomenon. Should go beyond 
description, and allow us to make predictions.

Computational Neuroscience - levels of abstraction in neural models

Structure-less ("point") models

à Discrete (binary) signals--discrete time

The action potential is the key characteristic in these models. Signals are discrete (on or off), and time is discrete.

At each time unit, the neuron sums its (excitatory and inhibitory) inputs, and turns on the output if the sum exceeds a 
threshold.

e.g. McCulloch-Pitts,  elements of the Perceptron, Hopfield discrete nets. 

A gross simplification. 

...but the collective computational power of a large network of these simple model neurons can be great. 

And when the model neuron is made more realistic (inputs are graded, last on the order of milliseconds or more, output is 
delayed), the computational properties of these networks is preserved (Hopfield, 1984).



à Continuous signals -- discrete time

Action potential responses are interpreted in terms of a single scalar continuous value--the spike frequency--at ith time t[i] .

Both of the above two classes are useful for large scale models (thousands of neurons). 

These discrete time models are the standard "connectionist models" that provide the basic buidling blocks for the networks 
modeled in this course. We will show later how the continuous signal model is an approximation of the structure-less 
continuous-time "leaky integrate and fire" model.

à Structure-less continuous-time

Analog. More realistic than discrete models.  Emphasizes nonlinear dynamics, dynamic threshold, refractory period, 
membrane voltage  oscillations. Behavior represented by differential equations.

• "integrate and fire" model -- takes into account membrane capacitance. threshold is a free parameter

• Hodgkin-Huxley model--Realistic. Parameters defining the model have a physical interpretation (e.g. various ion 
currents)

Structured models

à Passive - cable

From Segev (1992).

Cable theory - passive trees. Assume membrane is passive. Take into account dendritic morphology or structure. (Rall, 
1964). Uses cable equations on segments of dendrites.
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From Segev (1992).

à Passive - compartmental

Segev (1992).

à Dynamic - compartmental

Complex non-linear trees to model non-linear dynamical properties. Computer simulations necessary. Theory difficult.

One reason dendritic structure is important because it can show what a single neuron can compute.

à Dendritic structure shows what a single neuron can compute--Rall's motion selectivity example

 

Example: "motion selective" neuron
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Consider the sequential stimulation of the dendrite from left to right (ABCD) vs. right to left (DCBA). (Recall that 
information flow in the neuron as a whole is from the dendritic arbor towards the axon. ) (Anderson, 1995).

Dependence on location on dendrite. Rall's example.

Basis for visual motion selectivity?

Caveat: It is worthwhile pointing out that although this model of motion selectivity has been around for several decades, it 
has yet to be established that this is right model for motion selectivity of visual neurons. A major problem has been that 
dendritic transmission is actually too fast to account for the slow velocities that can be detected by animals (Barlow, 1996).

For the purposes of this course, dendritic morphology and its potential for increased computational power will unfortunately 
largely be ignored. We should remember that simple phenomena such as our sensitivity to motion direction differences may 
be computed on a single neuron rather than requiring a collection.
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Preview: McCulloch-Pitts
The next lecture will provide an overview of the first formal neural model--the McCulloch-Pitts model. This was developed 
in the 1940's and is famous and important because it showed that with a few simple assumptions, networks of of neurons 
may be capable of computing the full scale of logical operations.  

The model ignores some of the very properties we just looked at that might be important for certain kinds of neural 
processing (e.g. motion direction selectivity through dendritic cable transmission properties). The model abstracts properties 
that at the time seemed the most essential. Although some of the basic facts about the physiology were wrong, the notion of 
neurons as computational devices remains with us. 

In preparation for next time, here is a review of two basic logic operations, and how to compute logical functions in 
Mathematiica. 

Example 1: Inclusive OR. 

a b c

0 0 0

0 1 1

1 0 1

1 1 1

Example 2: AND

a b c

0 0 0

0 1 0

1 0 0

1 1 1

Next time we will see how a model neuron can be said to be doing threshold logic.. In the meantime, you can practice a 
bit more Mathematica  by constructing simple logical functions for OR, AND, exclusive OR, and NAND. Mathematica  
uses similar notation to the C programming language. Alternatively, you can use And, Or , Not.
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à Logic in Mathematica

a = True; b = False;

a || b
Or[a,b]
a && b
Xor[a,b]

True

True

False

True

MyNAND[a_,b_] := And[Not[a],b]
MyNAND[True,False]

False

More notes on getting started with Mathematica

à Numerical Calculations.  Last time you saw how you can do arithmetic. Try other operations, 5^3, 4*3 (note 
that 4 3, where a space separates the digits is also interpreted as multiplication). Note that if you try division, 
e.g. 2/3, you get the exact answer back.

N[2 3]

0.666667

You can go back and select an expression by clicking on the brackets on the far right. These brackets are features of the 
Macintosh interface and serve to organize text and calculations into a Notebook with outlining features. You can group or 
ungroup cells for text, graphs, and expressions in various ways to present your calculations. Explore these options under 
Cell in the menu.  You can see the possible cell types under the Style menu.

The most recent result of a calculation is given by % , the one before by %% , and so forth. By ending an expression with ; 
you can suppress the output--this is VERY useful later when the output might be a list of a 10,000 neural activity levels!
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(3/4)/6;
(3 4)/6;

%%

1-8

à Defining functions. In the next lecture, you will use Mathematica  to model the generic connectionist neuron. 
Part of the model will require defining a function. Here is an example:

squash[x_] := N[1/(1 + Exp[-x])];

The underscore, x_ is important because it tells Mathematica that x represents a slot, not an expression. Note that we've 
used a colon followed by equals ( := ) instead of just an equals sign (=). When you use an equals sign, the value is calculated 
immediately. When there is a colon in front of the equals, the value is calculated only when called on later. So here we use :
= because we need to define the function for later use.

Also note that our squashing function was defined with N[] . Mathematica trys to keep everything exact as long as possible 
and thus will try to do symbol manipulation if we don't explicitly tell it that we want numerical representations and 
calculations.

à Graphics. Plotting a graph of the squash function.

Plot[squash[x], {x,-5, 5}];
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This squashing function is often used to model the small-signal compression and large signal saturation characteristics of 
neural output.

Optional Exercise

Modify the squash function to include a parameter, beta, that controls the steepness of the non-linearity. Make a graph that 
superimposes two of the plots with different lambdas. Note you can superimpose two graphs as follows:
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Plot[{Exp[x],Sin[x]}, {x,-5, 5}];

Or like this:

g1 = Plot[Exp[x], {x,-5, 5}, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,.5,1]}];

g2 = Plot[Sin[x], {x,-5,5}, DisplayFunction->Identity,
PlotStyle->{RGBColor[1,.5,1]}];

Show[g1,g2,DisplayFunction->$DisplayFunction];

The DisplayFunction variable effectively turns the graphics display off and on.
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